A system that simultaneously transmits ultrahigh-definition live video and receives feedback signals offers greatly improved underwater optical communications.
The oceans provide an abundance of natural resources that support human life, from food and medicines to energy resources in oil and gas. The deep oceans are largely unexplored yet hold the potential for new resources to support the world’s burgeoning population.
Protecting existing resources, and discovering new ones, requires technologies capable of effectively monitoring and exploring the underwater environment. Exploration is traditionally undertaken by remotely operated vehicles (ROV), but even the most advanced ROVs have limited maneuverability and are tethered to ships, thus risking damage to coral reefs and pipelines.
Now, Ph.D student Abdullah Al-Halafi and his supervisor Basem Shihada have developed an underwater wireless optical communication (UWOC) system that transmits ultrahigh-definition real-time video, while simultaneously receiving feedback signals for improving the quality of the video and controlling the movement of the vehicle.
“The challenge is to design fully autonomous vehicles that are equipped with wireless technologies able to transmit high-quality live video, combined with sensing capabilities and robotic intelligence capable of mimicking human intuition and mobility,” says Al-Halafi.
Read the full article