KAUST graduates are characterized by the rigor of their Ph.D. programs, the long hours spent in the lab and classroom, juggling professional and personal commitments, achieving a work-life balance and, more recently, the ability to adapt to a global pandemic.
Esmail Abdul Fattah, a KAUST Ph.D. candidate in statistics, won a poster award in the "junior-BayesComp-ISBA" category at the 30th meeting of the International Society for Bayesian Analysis (ISBA 2022) held from June 26 to July 1 in Montreal, Canada.
Machine learning techniques can provide accurate forecasting of the spread of viruses during pandemics. Under the supervision of Ying Sun and Fouzi Harrou, Yasminah Alali developed an approach that removes human bias and assumptions, predicting pandemic evolution more accurately.