Thursday, September 10, 2020, 12:00
- 13:00
KAUST
Contact Person
When constructing high-order schemes for solving hyperbolic conservation laws with multi-dimensional finite volume schemes, the corresponding high-order reconstructions are commonly performed in characteristic spaces to eliminate spurious oscillations as much as possible. For multi-dimensional finite volume schemes, we need to perform the characteristic decomposition several times in different normal directions of the target cell, which is very time-consuming. We propose a rotated characteristic decomposition technique that requires only one-time decomposition for multi-dimensional reconstructions. This technique not only reduces the computational cost remarkably, but also controls spurious oscillations effectively. We take a third-order weighted essentially non-oscillatory finite volume scheme for solving the Euler equations as an example to demonstrate the efficiency of the proposed technique. We apply the new methodology to the simulation of instabilities in direct initiation of gaseous detonations in free space.
Prof. José Miguel Urbano, Department of Mathematics, University of Coimbra, Portugal
Tuesday, September 08, 2020, 16:00
- 17:30
KAUST
Contact Person
We will discuss the Lipschitz extension problem, its solution via MacShane-Whitney extensions, and its several drawbacks, leading to the notion of AMLE (Absolutely Minimizing Lipschitz Extension). We then present a rigorous and detailed analysis of the equivalence between being absolutely minimizing Lipschitz and enjoying comparison with cones. Finally, we explore some consequences of this geometric notion, chiefly the derivation of a Harnack inequality.
Monday, September 07, 2020, 12:00
- 13:00
KAUST
Contact Person
The talk will be pre-recorded and a youtube link will be provided to seminar participants. During the seminar time, Prof. Wonka will mainly answer some questions from the audience.
Sunday, September 06, 2020, 12:00
- 13:00
KAUST
Contact Person
With the advent of wearable sensors and internet of things (IoT), there is a new focus on electronics which can be bent so that they can be worn or mounted on non-planar objects. Due to large volume (billions of devices), there is a requirement that the cost is extremely low, to the extent that they become disposable. The flexible and low-cost aspects can be addressed through additive manufacturing technologies such as inkjet, screen and 3D printing. This talk introduces additive manufacturing as an emerging technique to realize low cost, flexible and wearable wireless communication and sensing systems. The ability to print electronics on unconventional mediums such as plastics, papers, and textiles has opened up a plethora of new applications. In this talk, various innovative antenna and sensor designs will be shown which have been realized through additive manufacturing. A multilayer process will be presented where dielectrics are also printed in addition to the metallic parts, thus demonstrating fully printed components. Many new functional inks and their use in tunable and reconfigurable components will be shown. In the end, many system level examples of wireless sensing applications will be shown. The promising results of these designs indicate that the day when electronics can be printed like newspapers and magazines through roll-to-roll and reel-to-reel printing is not far away.
Thursday, September 03, 2020, 16:00
- 17:00
KAUST
Contact Person
Biological knowledge is widely represented in the form of ontologies and ontology-based annotations. The structure and information contained in ontologies and their annotations make them valuable for use in machine learning, data analysis and knowledge extraction tasks. In this thesis, we propose the first approaches that can exploit all of the information encoded in ontologies, both formal and informal, to learn feature embeddings of biological concepts and biological entities based on their annotations to ontologies by applying transfer learning on the literature. To optimize learning that combines ontologies and natural language data such as the literature, we also propose a new approach that uses self-normalization with a deep Siamese neural network to improve learning from both the formal knowledge within ontologies and textual data. We validate the proposed algorithms by applying them to generate feature representations of proteins, and of genes and diseases.
Thursday, September 03, 2020, 12:00
- 13:00
KAUST
Contact Person
Discussing the concept of correlation and how to interpret it alone (marginally) or within a more complex environment (conditionally). This rather simple observation is the key observation behind a lot of exciting developments and connections in statistics that can be leveraged for improved computations and better motivated statistical models.
Sunday, August 30, 2020, 12:00
- 13:00
KAUST
Contact Person
Advances in power electronics have enabled many renewable energy applications. Wind energy harnessing is very promising and offshore farm installations have grown considerably in the past years. In this seminar we will go through some of the fundamentals of these enabling technologies and their applications. We will also present a simple, reliable, efficient and cost-effective concept applied to parallel connection of offshore wind turbines.
Dr. Byeongchan So, Postdoctoral researcher / Ph.D. Department of Nano-Semiconductor Engineering, ​Korea Polytechnic University
Thursday, August 13, 2020, 15:00
- 16:00
KAUST
Contact Person
In this seminar, the approaches for improving the efficiency of AlGaN based DUV emitters will be presented. The high-temperature metal organic chemical vapor deposition system has been used to grow high-quality AlGaN based epi-layers and nanostructure on the sapphire substrate.
Thursday, July 30, 2020, 18:00
- 20:00
KAUST
Contact Person
Frequency-reconfigurable RF components are highly desired in a wireless system because a single frequency-reconfigurable RF component can replace multiple RF components to reduce the size, cost, and weight. Typically, the reconfigurable RF components are realized using capacitive varactors, PIN diodes, or MEMS switches, which are expensive, require tedious soldering steps, and are rigid and thus non-compatible with futuristic applications of flexible and wearable electronics. In this work, we have demonstrated vanadium dioxide (VO₂) based RF switches that have been realized through additive manufacturing technologies (inkjet printing and screen printing), which dramatically brings the cost down to a few cents. Also, no soldering or additional attachment step is required as the switch can be simply printed on the RF component. The printed VO₂ switches are configured in two types (shunt configuration and series configuration) where both types have been characterized with two activation mechanisms (thermal activation and electrical activation) up to 40 GHz. The measured insertion loss of 1-3 dB, isolation of 20-30 dB, and switching speed of 400 ns is comparable to other non-printed and expensive RF switches. Moreover, as an application for the printed VO₂ switches, a fully printed frequency reconfigurable filter has also been designed in this work.
Thursday, July 30, 2020, 16:00
- 18:00
KAUST
Contact Person
Many key problems in machine learning and data science are routinely modeled as optimization problems and solved via optimization algorithms. With the increase of the volume of data and the size and complexity of the statistical models used to formulate these often ill-conditioned optimization tasks, there is a need for new efficient algorithms able to cope with these challenges. In this thesis, we deal with each of these sources of difficulty in a different way. To efficiently address the big data issue, we develop new methods which in each iteration examine a small random subset of the training data only. To handle the big model issue, we develop methods which in each iteration update a random subset of the model parameters only. Finally, to deal with ill-conditioned problems, we devise methods that incorporate either higher-order information or Nesterov's acceleration/momentum. In all cases, randomness is viewed as a powerful algorithmic tool that we tune, both in theory and in experiments, to achieve the best results.
Prof. Katharina Lorenz, Instituto Superior Técnico, University of Lisbon
Thursday, July 23, 2020, 16:00
- 17:30
KAUST
Contact Person
Katharina Lorenz's main research interests are the doping of WBS with optically active ions and the study of radiation effects in WBS materials for radiation detectors and radiation resistant electronics.
Prof. Levon Nurbekyan, Department of Mathematics, UCLA
Wednesday, July 15, 2020, 21:00
- 23:00
KAUST
Contact Person
In this short course, I will discuss connections between mean-field games (MFG) systems and modern machine-learning (ML) techniques and problems. In the first part of the course, roughly the first two lectures, I will present how various ML techniques can be applied to solve high-dimensional MFG systems that are far out of reach for traditional methods. In the second part of the course, I will discuss the reverse relation, namely, how the MFG framework can be useful for solving specific ML problems.
Prof. Levon Nurbekyan, Department of Mathematics, UCLA
Tuesday, July 14, 2020, 21:00
- 23:00
KAUST
Contact Person
In this short course, I will discuss connections between mean-field games (MFG) systems and modern machine-learning (ML) techniques and problems. In the first part of the course, roughly the first two lectures, I will present how various ML techniques can be applied to solve high-dimensional MFG systems that are far out of reach for traditional methods. In the second part of the course, I will discuss the reverse relation, namely, how the MFG framework can be useful for solving specific ML problems.
Prof. Levon Nurbekyan, Department of Mathematics, UCLA
Monday, July 13, 2020, 21:00
- 23:00
KAUST
Contact Person
In this short course, I will discuss connections between mean-field games (MFG) systems and modern machine-learning (ML) techniques and problems. In the first part of the course, roughly the first two lectures, I will present how various ML techniques can be applied to solve high-dimensional MFG systems that are far out of reach for traditional methods. In the second part of the course, I will discuss the reverse relation, namely, how the MFG framework can be useful for solving specific ML problems.
Thursday, July 09, 2020, 16:00
- 17:00
KAUST
Contact Person
Out-of-Core simulation systems often produce a massive amount of data that cannot fit on the aggregate fast memory of the compute nodes, and they also require to read back these data for computation. As a result, I/O data movement can be a bottleneck in large-scale simulations. Advances in memory architecture have made it feasible to integrate hierarchical storage media on large-scale systems, starting from the traditional Parallel File Systems to intermediate fast disk technologies (e.g., node-local and remote-shared NVMe and SSD-based Burst Buffers) and up to CPU’s main memory and GPU’s High Bandwidth Memory. However, while adding additional and faster storage media increases I/O bandwidth, it pressures the CPU, as it becomes responsible for managing and moving data between these layers of storage. Simulation systems are thus vulnerable to being blocked by I/O operations. The Multilayer Buffer System (MLBS) proposed in this research demonstrates a general method for overlapping I/O with computation that helps to ameliorate the strain on the processors through asynchronous access. The main idea consists in decoupling I/O operations from computational phases using dedicated hardware resources to perform expensive context switches. By continually prefetching up and down across all hardware layers of the memory/storage subsystems, MLBS transforms the original I/O-bound behavior of evaluated applications and shifts it closer to a memory-bound or compute-bound regime.
Thursday, July 09, 2020, 15:00
- 16:00
KAUST
Contact Person
In this thesis, we present a pragmatic heterogeneous integration strategy to obtain high-performance 3D electronic systems using existing CMOS technology. Critical challenges addressed during the process are; reliable flexible interconnects, maximum area efficiency, soft-polymeric packaging, and heterogeneous integration compatible with current CMOS technology. First, a modular LEGO approach presents a novel method to obtain flexible electronics in a lock-and-key (plug and play) manner with reliable interconnects. It includes a process to convert standard rigid IC into flexible LEGO without any performance degradation with a high-yield. For the majority of healthcare and environmental monitoring applications, a sensory array is essential for continuous spatiotemporal activity recording. Here we present an ultra- high-density sensory solution (1 million sensors) as an epitome of density and address each of the associated challenges. A generic heterogeneous integration scheme is devised to obtain a physically flexible standalone electronic system using 3D-coin architecture. Lastly, a feather-light non-invasive ‘Marine-Skin’ platform to monitor deep-ocean monitoring is presented using the heterogeneous integration scheme. Electrical and mechanical characterization establish the reliability, integrity, robustness, and ruggedness of the processes, sensors, and multisensory flexible system.
Prof. Qixin Guo, Department of Electrical and Electronic Engineering, Saga University
Thursday, July 09, 2020, 09:00
- 10:30
KAUST
Contact Person
Prof. Dr. Guo received B. E., M.E., and Dr. E degrees in electronic engineering from Toyohashi University of Technology in 1990, 1992, and 1996, respectively. He is currently a Professor of Department of Electrical and Electronic Engineering, Saga University as well as Director of Saga University Synchrotron Light Application Center. His research interests include epitaxial growth and characterization of semiconductor materials. Prof. Guo has published more than 300 papers in scientific journals including Nature Communications, Advanced Materials, Physical Review B, and Applied Physics Letters with more than 7200 citations (h-index: 43).
Prof. Francisco J. Silva, Applied Mathematics, University of Limoges, France
Wednesday, July 08, 2020, 14:00
- 17:00
KAUST
Contact Person
In this course, we will consider the so-called Lagrangian approach to mean-field games. We will introduce the problem by recalling some basic results for nonatomic games in a static framework. Next, based on recent results in collaboration with Markus Fischer (University of Padua), I will introduce the analogous setting in the deterministic and dynamic framework. In the second part of the course, I will present the details of a convergence result, obtained in collaboration with Saeed Hadikhanloo, of equilibria of a suitable sequence of discrete-time and finite mean-field games, as introduced by Gomes, Mohr, and Souza in 2010, to an equilibrium of the first-order mean-field game system. The convergence proof relies importantly on the Lagrangian formulation of equilibria.
Prof. Francisco J. Silva, Applied Mathematics, University of Limoges, France
Monday, July 06, 2020, 14:00
- 17:00
KAUST
Contact Person
In this course, we will consider the so-called Lagrangian approach to mean-field games. We will introduce the problem by recalling some basic results for nonatomic games in a static framework. Next, based on recent results in collaboration with Markus Fischer (University of Padua), I will introduce the analogous setting in the deterministic and dynamic framework. In the second part of the course, I will present the details of a convergence result, obtained in collaboration with Saeed Hadikhanloo, of equilibria of a suitable sequence of discrete-time and finite mean-field games, as introduced by Gomes, Mohr, and Souza in 2010, to an equilibrium of the first-order mean-field game system. The convergence proof relies importantly on the Lagrangian formulation of equilibria.
Thursday, July 02, 2020, 14:00
- 16:00
KAUST
Contact Person
In biochemically reactive systems with small copy numbers of one or more reactant molecules, stochastic effects dominate the dynamics. In the first part of this thesis, we design novel efficient simulation techniques, based on multilevel Monte Carlo methods and importance sampling, for a reliable and fast estimation of various statistical quantities for stochastic biological and chemical systems under the framework of Stochastic Reaction Networks (SRNs). In the second part of this thesis, we design novel numerical methods for pricing financial derivatives. Option pricing is usually challenging due to a combination of two complications: 1) The high dimensionality of the input space, and 2) The low regularity of the integrand on the input parameters. We address these challenges by using different techniques for smoothing the integrand to uncover the available regularity and improve quadrature methods' convergence behavior. We develop different ways of smoothing that depend on the characteristics of the problem at hand. Then, we approximate the resulting integrals using hierarchical quadrature methods combined with Brownian bridge construction and Richardson extrapolation.
Prof. Marco Cirant, Department of Mathematics, University of Padova, Italy
Thursday, July 02, 2020, 09:00
- 12:00
KAUST
Contact Person
In this short course, I will address some regularity aspects in the theory of Mean-Field Games systems, with special emphasis on stationary and uniformly elliptic problems. I will first describe some regularity results for linear uniformly elliptic PDEs and semi-linear PDEs of Hamilton-Jacobi type. Then, I will show how to use these tools to prove the existence (and in some cases uniqueness) of solutions to MFG systems.
Wednesday, July 01, 2020, 16:00
- 18:00
KAUST
Contact Person
Mean-field games (MFGs) study the behavior of rational and indistinguishable agents in a large population. Agents seek to minimize their cost based upon statistical information on the population's distribution. In this dissertation, we study the homogenization of a stationary first-order MFG and seek to find a numerical method to solve the homogenized problem. More precisely, we characterize the asymptotic behavior of a first-order stationary MFG with a periodically oscillating potential. Our main tool is the two-scale convergence. Using this convergence, we rigorously derive the two-scale homogenized and the homogenized MFG problems. Moreover, we prove the existence and uniqueness of the solution to these limit problems. Next, we notice that the homogenized problem resembles the problem involving effective Hamiltonians and Mather measures, which arise in several problems, including homogenization of Hamilton--Jacobi equations, nonlinear control systems, and Aubry--Mather theory. Thus, we develop algorithms to solve the homogenized problem, effective Hamiltonians, and Mather measures.