Konstantin Mishchenko, a Ph.D. student under the supervision of Professor Peter Richtárik, has been selected as one of the Association for the Advancement of Artificial Intelligence’s (AAAI) 12 Outstanding Program Committee Members for 2020. Mishchenko was presented with a certificate in recognition of his outstanding service at AAAI-20 held in New York from February 7-12.
KAUST computer science Ph.D. student Jinhui Xiong recently won the best paper award at the 24th International Symposium on Vision, Modeling, and Visualization. The symposium took place from September 30 to October 2, 2019, at the University of Rostock, Germany, and provided the opportunity for researchers to discuss a wide range of topics in computer science, including computer graphics, vision, visualization and visual analytics.
Prior to joining the KAUST CEMSE Division earlier this year, Mohamed Elhoseiny received his Ph.D. degree from Rutgers University, New Brunswick in 2016, before spending over two years working as a postdoctoral researcher at Facebook in the company’s AI research wing. Elhoseiny joins the Division as an assistant professor of computer science based in the KAUST Visual Computing Center (VCC). He will also act as the PI of the KAUST Computer Vision, Content AI (Vision-CAIR) Research Group. Outside of his duties at KAUST, he is also acting as an artificial intelligence (AI) research consultant for Baidu Research, Silicon Valley AI Lab.
Dominik L. Michels, Assistant Professor of Computer Science and Applied Mathematics, and Head of the Computational Sciences Research Group within KAUST's Visual Computing Center, was recently awarded one of the six Artificial Intelligence Grants of the State of North Rhine-Westphalia (NRW), Germany, for his contributions to the simulation of complex physical environments. The grant, amounting to 1.25 million euros, will fund Michels’ research on algorithmic methods to use synthetic data for training of neural networks in Machine Learning. “Synthetic data are data that were not obtained by direct measurement but were generated by specific algorithms,” Michels explains, “in neural networks, the use of synthetic data is needed whenever the amount of data available is less than required.”
Peter Richtárik, KAUST professor of computer science, recently received a Distinguished Speaker Award at the Sixth International Conference on Continuous Optimization (ICCOPT 2019) held in Berlin from August 3 to 8. ICCOPT 2019 was organized by the Mathematical Optimization Society and was hosted this year by the Weierstrass Institute for Applied Analysis and Stochastics.