Training an AI eye on the Moon

KAUST scientists have developed a machine learning method to explore the surface of the moon. © 2021 KAUST; Anastasia Serin.

A Moon-scanning method that can automatically classify important lunar features from telescope images could significantly improve the efficiency of selecting sites for exploration.

There is more than meets the eye to picking a landing or exploration site on the Moon. The visible area of the lunar surface is larger than Russia and is pockmarked by thousands of craters and crisscrossed by canyon-like rilles. The choice of future landing and exploration sites may come down to the most promising prospective locations for construction, minerals or potential energy resources. However, scanning by eye across such a large area, looking for features perhaps a few hundred meters across, is laborious and often inaccurate, which makes it difficult to pick optimal areas for exploration.

Siyuan Chen, Xin Gao and Shuyu Sun, along with colleagues from The Chinese University of Hong Kong, have now applied machine learning and artificial intelligence (AI) to automate the identification of prospective lunar landing and exploration areas.

“We are looking for lunar features like craters and rilles, which are thought to be hotspots for energy resources like uranium and helium-3 — a promising resource for nuclear fusion,” says Chen. “Both have been detected in Moon craters and could be useful resources for replenishing spacecraft fuel.”

Read the full article